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This paper gives an overview of projection methods for computing stationary probability

distributions for Markov chain models. A general projection method is a method which seeks an
approximation from a subspace of small dimension to the original problem. Thus, the original

mawix problem of size N is approximated by one of dimension m, typically much smaller than N.

A particularly successful class of methods based on this principle is that of Krylov subspace

methods which utilize subspaces of the form span(v, av ..... ,4m"v). These methods are effective

in solving linear systems (Conjugate Gradients, GMRES .... ) and eigenvalue problems (Lanczos,

Arnold/ .... ) as well as nonlinear equations. They can be combined with more trad/tional iterative

methods such as $OR, SSOR, or with incomplete factorization methods to enhance convergence.
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1 Introduction

In Maxkov chain modeling, one often seeks the stationaxy probability distributions of a

system that can occupy a number of N different states. If we number these states from 1 to

N, and call w_ the probability of the system to be in state i at equilibrium, i.e., in the long

run, then the basic equation to compute these probabilities is

w/' (1)

where w = [w1,w2, .,.,w/v] iS the row vector comprised of the stationary probabilities, and

P is the matrix of transition probabilities: pij is the probability that the system switches

from state i to state j for i _ j and p_ = 1 - _j_ipij. The system (1) can be viewed

as an eigenv_ue problem, or more precisely an eigenvector problem, since the eigenv_lue is

known to be unity. In fact the right eigenvector is known and we seek the left eigenvector.

Alternatively, defining

Q=I-P (2)

we may rewrite (1) as
wQ = 0 or QTwT = 0 (3)

which is a homogeneous linear system to solve. The reason why we distinguish between these

two view-points is that there axe methods that axe well-known for linear systems but have no

equivalent for eigenvalue problems and vice versa. We can choose effective algorithms from

both camps. For example, subspace iteration which is one of the methods used in Maxkov

chain modeling, is not directly applicable for solving linear systems.

When the number of states is small then there axe a number of reliable techniques that

can be used to solve (i), for example an inverse iteration approach based on Gaussian

elimination. The difilculty is that in practice the number of states for realistic systems can be

enormous and the cost and storage of the standard methods becomes prohibitive. The main

philosophy of projection methods is to avoid costly ma_pulations on the original matrix.

Rather, the main operations performed with the matrix axe matrix by vector multiplications.

The matrix P is usually very sparse so that storage is not a big burden and matrix by vector

multiplications are inexpensive.

The organization of the paper is as follows. We start by describing general projection

processes for both eigenva]ue problems and linear systems in Section 2. In Section 3 we

take on the eigenvalue point of view and describe two techniques based on this approach.

The linear systems point of view will then be described in Section 4 with some specific

approaches. Some numerics] tests will then be reported.

2 Projection methods

2.1 Projection techniques for solving Hnear systems

We start with the linear system of linear equations,

Az = b (4)
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where A is a large sparse nonsymmetric matrix. A projection process to solve (4) is a tech-

nique that computes an approximation to (4) from a subspace of dimension m by enforcing

some orthogonality condition on the residual vector r - b - Az. More precisely, let K be

a subspace of dimension m from which we seek the approximation to z and let L be an-

other subspace of dimension m which will define the orthogonality conditions. We define the

approximate solution by writing that

_ K (5)
b-A_ ± L (6)

Since the approximation z lies in a subspace of dimension m and (6) imposes rn conditions,

there will in general, but not always, exist a unique solution to the above problem, but we

will come back to this problem later.

The approach just described is known as the Petrov-Galerkin projection method. A

particular c_e of importance is when L = K. Then the method is called an orthogonal

projection method or a Galerkin method.

Let P be the orthogonal projector onto K: for any z, Pz is uniquely defined by Pz E

K, (I - P)z ± K. Similarly, let Q be the (oblique) projector onto K and orthogonal to

L: for any z, Qz is uniquely defined by Qz E K, (I - Q)z ± L. For this projector to be

defined it is assumed that no vector of K is orthogonal to L, or equivalently, that no vector

of L is orthogonal to K. Then the Petrov-Galerkin method consists of replacing the original

problem by the problem of finding _ satisfying the equations P_ = _, and Q(b - A_) = 0.

In other words, _ is a nontrivial solution of

Q(b-AP_)= o (7)

which takes the form

.4_ = Qb (8)

where we have set .4 = QAP.

The question that arises next is: given the two subspaces K and L, how accurate should

we expect the approximate solution to be? It is in general dimcult to answer this question.

The element of K that is the closest to the exact solution z* in the 2-norm sense is clearly

Pz*. So the error in the 2-norm sense must be larger than n(I - P)z*[[_. This is an upper

bound but we wish to find a lower bound. Typically one would like to establish an upper

bound on the residual norm b - A_ in terms of, for example, (I - P)z*. We know of no

simple error bounds of this type for general projection methods in the nonhermitian case.

However, we can easily establish an a-priori residual bound for the approximate problem.

More precisely,

Theorem 2.1 Let 7 = IIQA(I- P)[12 The ezacZsolution _* satiates the follo_ng _esidu_l
condition with respect to the approzimate problem (8):

]lQb- A=*II,_<"rlt(I- P)=*II, (9)



Proof : We have

Q,b- _,z ° = QAz ° - QAPz* = QA(I - V)z °

Since I- P is a projector this gives

Qb- Ax"= QA(I- P)(Z- P)x"

(10)

(11)

which immediately yields the result. []

In many of the projection methods, b is a vector of K so that we have Qb = b. This theorem

shows that when the distance between the exact solution z" and the subspace K is small

then a good approximation can be obtained provided that the norm of Q is not too large

and that the projected problem is not too poorly conditioned. In the orthogonal projection

case,Q = P and weget _ < IIAII,.
In practice, one needs to work with some convenient basis of the subspace K. Given a

basis V - Iv1, v,, ..., v,,,] of K and a basis W = [w,, w,, ..., w,_] of L, and writing $ = V,,y

where y is in !_ TM, we see immediately that y must satisfy

Wr_(AV,,y-b)-O (12)

or

Hy = Wr_b (13)

where we have set H = W_AV,,,.

There axe two important particular cases for L. The case when L = K, we have already

mentioned. The second case of importance is when L = AK because it is equivalent to

minimizing the residual norm on the subspace K. More precisely, we have the following

theorem, see for example [16].

Theorem 2.2 When L - AK then the approzimate solution _ minimizes the residual norm

over the subspace K.

We refer to this class of projection methods as the class of minimal residual methods. An

example of such a technique will be described later in Section 3.

It is important to consider the effect of using a nonzero initial guess for approximating

the solution. If we had s guess zo to the solution of (4) we would attempt to find a vector

5 in K so that the update zo + 5 satisfies the usual Petrov-Galerkin conditions. In other

words, we would write

b- A(_o+ 8) ± L or ro - A5 ± L (14)

with the usual notation ro = b- Az0.

In Markov chain modeling, the matrix A is singular and b = 0 and we would like to

show how to adapt the methods just described to this situation. A direct application of the

previous principles would lead to a projected problem of the form

Hy=0. (15)
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Unfortunately, there is no reasonfor H to be a singular matrix and as a result the only

solution to (15) would be y = 0 in general. The difficulty does not arise if we take the

nonzero initial guess formulation discussed above. Then the projected problem becomes

Hy---Qrro (16)

in which r0 = b - Az0 = -Az0. Notice that if the matrix H happens to be singular, then

one can take the solution of (16) to be an elgenvector of the matrix H associated with the

eigenvalue zero. With this modification one can say that the projected problem always has

a solution. The only possible concern might be the practicality of the decision to declare

a matrix singular. The real question is whether or not a nearly singular matrix could lead

to a substantially different result than would be obtained by considering it to be singular.

However, if the matrix is nearly singular then the solution of (16) is equivalent to a form of

inverse iteration and the result, after normalization, should be an accurate approximation

to the exact .eigenvector associated with the eigenvalue zero.

For the minimal residual methods referred to earlier there is no difficulty in defining the

approximate solution in the formttlation where z0 _ 0. This is because the approximate

solution minimizes the 2-norm of r0 - A5 over 6 G K and this optimization problem always
has a unique solution.

2.2 Projection techniques for solving eigenvalue problems

We now consider the standard eigenvalue problem,

Az = Az (17)

Similarly to the previous section, we assume that we are given two subspaces K and L,

and we seek an approximate eigenvalue _ E C and an approximate elgenvector _ from the

subspace K, by imposing the Petrov-Galerkin condition

A_ - _ ± L (18)

Similarly to the previous section, if P is the orthogonal projector onto K and Q is the oblique

projector onto K orthogonally to L, then the original problem is replaced by the projected
problem

A_ = _ (19)

and we can show a theorem similar to the main theorem of the previous section, namely

Theorem 2.3 Let 3' = IIQA(1- P)[I,. The ezact eigenvector z associated with the ezact

eigenvalue ,_ satisfies the following residual condition with respect to the approzimate problem
(16),

II(A- , .V)xll,_< + I,M'II(X-P) II:, (20)

The proof of this result is similar to the one shown in the previous section for linear

systems and can be found in [13].
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3 Methods for eigenvalue problems

We consider two sample eigenvalue methods used in Msrkov chain modeling. The first is a

technique based on the subspace iterationmethod of Bauer [3].It has been used with good

success for Markov chain modeling [7,18]. The second is a method due to Arnoldi [1]in

1951.

3.1 Subspace Iteration

One of the simplest methods for computing invzLrisnt subspaces is the so-called subspace

iteration [7, 18] methods well-known to the structural engineers. In its simplest form, the

method is equivalent to a projection method onto the subspace K - span{A"Vo} where t/0

is an initial set of p columns, i.e., an N x p matrix. Note that the dimension of the subspace

K is constant. One of the forms of the subspace iteration algorithm can be described as
follows. "

1. Choose an initial orthonormal system 1/0 - [rl,v2,...,r,_] and an integer k;

2. Compute X - AhV0 and orthonormalize X to get V.

3. Perform a projection process with V, i.e., compute the eigenvalues and the matrix U

of eigenvectors of the matrix C = VTAV.

4. Test for convergence. If satisfied then exit else continue.

5. Take V0 - VU, the set of approximate eigenvectors choose, a new k and go to 2.

A weU-known alternative consists of replacing the set of eigenvectors U in steps 3 and 5

by the $chur vectors of the matrix C, i.e., the column vectors of the matrix that transforms

C in upper quasi-trians-alax form [19, 15]

The above algorithm utilizes the matrix A only to compute successive matrix by vector

products tv = At, so sparsity can be exploited. However, it faces the drawback that it is

generally a slow method.

Often, Chebyshev iteration is used to accelerate convergence: step 2 is replaced by X =

th(A)l/0, where t_ is obtained from the Chebyshev polynomial of the first kind, of degree k,

by a linear change of variables. The three-term recurrence of Chebyshev polynomials allows

to compute a vector to = tt(A)_; at almost the same cost as Akv. Moreover, it is then possible

to compute the rightmost (or leftmost) elgenvalues of A. Also, performance is improved as

this is the usual primary reason for using Chebyshev iteration. I)et_s on _mpiementation

can be found in [14].

Subspace iterationas described above is seldom competitive with methods that use a

combination of preconditioning and Krylov subspace methods described later.If we use a

block-sizeof p, then the convergence rate for the e_gen_ue AI = 1,iSof the order of lAp+1[,

ifwe order the eigenvaluesby decreasing order of magnitude.
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3.2 Arnoldi's method

A second method used in the literature is the Arnoldi process [1, 11] which is a projection

process onto the so-called Krylov subspace

Km = span{vl,Avl,...,A"-lvl}. (21)

The algorithm starts with some nonzero vector va and generates the sequence of vectors v/

from the following algorithm,

Algorithm: Arnoldi

1. Initialize:

Choose an initial vector vl of norm unity.

$. Iterate: Do j = 1,2,...,m

1. Compute w := Avy

2. Compute a set of j coefficients hiy so that

i----1

(22)

is orthogonal to all previous vi's.

3. Compute = and =

By construction, the above algorithm produces an orthonormal basis of the Krylov sub-

space K,n = span{v1, Avl,... ,A"_-avl}. The m × rn upper Hessenberg matrix H,,,, consist-

ing of the coefficients hiy computed by the algorithm, represents the restriction of the linear

transformation A to the subspace K,,,, with respect to this basis, i.e., we have

B. =VSAV., (23)

where V,_ = [vl, v2,..., v,_]. Approximations to some of the eigenvalues of A can be obtained

from the eigenvalues of H,_. This is Aruoldi's method in its simplest form.

Note the useful relation for later use,

AV,,, = V,_+IH= (24)

= V, nH,_ + h,n+l,,nv,_+le_ (25)

where H,,, is the (m + 1) × m upper Hessenberg matrix whose nonzero dements are the hij

defined in the above algorithm. In other words H,,, is obtained from H,,, by appending the

row [0, 0,..., 0, h,.+l,,_] to it.
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As m increases, the eigenvalues of H,, that are located in the outermost part of the spec-

trum start converging towards corresponding eigenvalues of A. In practice, however, one

difBculty with the above algorithm is that as m increases cost and storage increase rapidly.

One solution is to use the method iteratively: m is fixed and the initial vector vl is taken at

each new iteration as a linear combination of some of the approximate eigenvectors. More-

over, there are several ways of accelerating convergence by preprocessing vl by a Chebyshev

iteration before restarting, i.e., by taking vl = t_(A)z where z is again a linear combination

of eigenvectors.

A technique related to Arnoldi's method is the nonsymmetric Lanczos algorithm [9, 4]

which delivers a nonsymmetric tridiagonal matrix instead of a Hessenberg matrix. Unlike

Arnoldi's process, this method requires multiplications by both A and A r at every step. On

the other hand it has the big advantage of requiring little storage (5 vectors). Although no

comparisons of the performances of the Lanczos and the Arnoldi type algorithms have been

made, the Lanczos methods are usually recommended whenever the number of eigenvalues
to be comptited is large.

4 Methods for linear systems

4.1 FOM and GMRES

In this section we take the point of view that we want to solve the linear system Az = b.

We start by assuming that the system is nonsingular. The methods to be described here are

based on Krylov subspaces. Assume that we have an initial guess z0 with residual vector
ro - b- Azo. We will take

_,_- _o/_, where _ = llroll_ (2e)

and run rn steps of Arnoldi's methods starting with the vector vl thus defined. To apply

a Galerkin projection process onto the subspace K_, we need to seek a vector 5,, E K,_

that satisfies the conditions (14) with L - K. Writing 5,,, - V,,,9,,, and the orthogonality
condition

VL(ro- A_m_m)= 0

yields immediately

_.,.= H.T,I_e, (27)

wherewehaveset _ - II,oli=and usedtheorthogonalityof P',,, andtherelation(23).Thus
the approximate solution takes the form

• ,,,= _o+ V,,H,T.'t3e_ (28)

The method described above which consists of generating the Arnoldl basis V_, with vl

defined by (26) and the approximate solution via (28) is referred to as the Arnoldi process

for linear systems Or "Full Orthogonalization Method" [12]. A detail that is important for

8



the implementation is that the residual norm of the approximate solution can be determined,

without explicitly computing the solution, via the formula

lib- Az_II2 - r (29)

which is a direct consequence of (25).

Although not proved rigorously, it is usually observed that as m increases, the approx-

imate solution z,_ rapidly approaches the exact solution. Ideally, one would like to use a

large enough m that z,_ is as close as desired to the solution. However, this is not feasible in

practice because of the rapid increase in the storage requirement as the dimension m of the

subspace increases. Therefore, the basic idea described above is usually implemented with

restarting. The dimension m is fixed, and the method is after each outer loop consisting of

the process just described the initial guess z0 is reset to be equal to z,_ and the process is

restarted until convergence is achieved.

One drawback of the above algorithm is that from the theoretical point of view there is

little known concerning convergence. For this reason, several authors have instead turned

to methods with optimal properties: for example one may seek a method that minimizes

the residual norm over the whole subspace K. As was seen before, this is realized by taking

L --- AK. One such version is the GMI_.ES algorithm [17]. In GMRES, one seeks to minimize

the residual norm of the approximate solution in the at_e subspace z0 + K,_. This means

that the approximate solution z0 + Vmy must minimize J(y) - lib- AV_y[[2 over y E [itm.

Utilizing the relation (24) we get

J(_) = lib- A(=o+ V,,,_)II,= II,'o- AV.vlI=
= II_,,,- v,,,+_',,,_ll, = II'¢',,,+,Le_,-_r,,,y]ll=
= II_e_- _vllffi

The last equality is a consequence of the orthogonality of the vectors v_'s. Therefore the

only difference between this approach and the FOM approach is the way in which the vector

y is obtained. In one case it is obtained by solving the m × m linear system (27) and in the

second by solving the least squares p_oblem

Find 9,_ solution of: rain II_e,- H-_I= (30)
ue:[R_

Similarly to the FOM method, there exists a formula that allows to compute the residual

norm of z,_ without computing zm. This is based on the trivial equality

lib- A=,,,II2= rain II_e_- _r,,,_ll=- (31)

In a practical implementation of the GMRES algorithm, the Hessenberg matrix is profftes-

sively reduced to upper triangular form by using Givens rotations. The same rotations axe

applied to the right-hand-side 3el. Because the last row of the resulting matrix is a zero row,

the above minimum can be seen to be equal to the bottom dement of the right-hand-side

9



after these rotations. This provides the residual norm of the current iterate for free without

having to compute the iterate itself.

In summary we can put the two methods within the same framework as follows.

Algorithm : FOM / GMRES

1. Start: Choose Zo.

2. Arnoldi process:

• Compute ro :- b - Azo ;

• Compute/9 = I[roH2 ; and vt = ro/_.

• Arnoldi process. For j - 1,2,..., do:

(a) Form Avj and orthogonalize it against the previous vl,--. ,vj via

hij = (Av#,vi), i = 1,2,...,j,

J

i----I

h +x,j= II J+lllffi,and
vj+l = _3#+l/h#+tj.

(32)

(b) Compute the residual norm pj = lib-Azjl[2, of the solution zj via the formula

(29) and (31).

(c) If pj _< e set m = j and go to (3).

. Form the approzimate solution:

Define/_,_ to be the (m + 1) × m (Hessenberg) matrix whose nonzero entries are the

coefficients h_j, I _< i _< j + 1, 1 _< j _< m, and H_ the m x m submatrix obtained from

/_,_ by removing its last row. Let V,_ -- [vl, v_,-.-, v,_], and where e_ = [1, 0,..., O]r.
Then:

FOM:

• Compute zm = Zo + 13VmH,_lel.

GMRES:

• Find the vector y,_ which minimizes [l_ex - _r,_yl[2, over all vectors y in R'_.

• Compute zm = zo + Vmym,.

4. Stopping test: If z,_ is determined to be a good enough approximate solution to (4),

then stop, else set zo := z,n and go to 2.
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4.2 Preconditionings

Often the projection methods themselves are not sufficient to achieve good performance and

preconditioning is necessary. Typical preconditioning techniques consist of approximating

the original matrix by a 'close by' matrix M and then solving a preconditioned system such
as

M-1Az = M-lb (33)

by some suitable iterative method. For this approach to be practical it is necessary that

the linear system solution with the matrix M be inexpensive and easy to implement. In the

core of the Krylov subspace algorithm that is used, the matrix by vector product is replaced

by a matrix vector product followed by a linear system solve with the matrix M. Thus

the modifications to the algorithm FOM/GMRES displayed above is simply to replace all

occurrences of A by M-1A, and the right hand side b by M-lb. One can also precondition

by solving the system

AM-lz = b (34)

whose solution z is related to the solution of the original system by z - M-lz. The_e

are no a-priori reasons for using this right-preconditioning approach rather than the left

preconditioning approach, except that an approximate solution _ for the system (34) has the

same residual vector as for the original system.

The simplest preconditioning technique is the incomplete LU factorization which consists

of factoring A as

A = LU + E (35)

where the matrix LU matches A everywhere where there are nonzero elements and E is

a remainder. The matrix M = LU is then used as a preconditioning matrix. Note that

the exact LU factorization of A would require far more computation and storage than the

incomplete LU factorization whose cost is typically of the order of NZ, the number of nonzero

elements of A. The simplest form of incomplete factorization is one in which the/; matrix

has the same structure as the lower part of A and the U has the same structure as the upper

triangular part of A. This is referred to as the ILU(0) preconditioning to account for the
fact that no fdl-in is allowed.

The incomplete LU factorization outlined above exists for M matrices and can be com-

puted by a very simple procedure which consists of performing the LU factorization and

replacing by zero any nonzero elements that is introduced outside of the nonzero structure

of A, during the process.

We are interested in the incomplete factorization of the matrix A - QT but since this

matrix is singular the classical results on the existence of the ILU factorization [8] do not

readily apply to this case. However, these classical results can be trivially extended to such

matrices by, for example, adapting the results in [2], page 42.

The quality of the ILU(0) preconditioning can be improved in several ways by allowing

more fill-in. A notion that is used in this regard is that of level of fill-in: initially all elements

have level of fill-in equal to zero. Thereafter, at each step the level of fill-in of an element is

updated by adding one to the sum of the levels of fill-ins of its parents in L and U. Here the
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parent-cldld relation correspondsto the creation of a fill-in element by the basic operation

in Gaussian elimination. ILU(k) will then correspond to dropping all elements whose level

of fill-in exceeds k. Thus ILU(O) is the usual incomplete LU factorization with no fdl-in.

As can be seen this incomplete factorlzation technique relies entirely on the structure of

the matrix and not at all on the actual values of its elements. For a large class of problems

that come from PDE's this is usually sufficient because of the fact that these matrices are

M-matrices. On the other hand, the situation may be different for other classes of problems.

An alternative used is to drop the elements during the ILU factorization according to

their magnitude rather than their position. Several such techniques exist [6, 20]. Some are

implemented in the context of direct solvers such as in MA28 [5] and in Y12M [20]. Here a

rather accurate incomplete factorization is usually performed and a simple technique such as

iterative refinement is used as an iterative procedure. In the context of iterative solvers, one

can simplify the factorization process enormously [6, 10]. One drawback of this approach is

that it is rather difficult to predict the storage that will be necessary during the factorization.

A second alternative would be to only keep a given number of elements per row during the

incomplete factorization. Two techniques based on the two approaches outlined above have

been implemented and tested on realistic Markov chain problems in [10].

In addition to incomplete factorization preconditionings one can also use the more tra-

ditional relaxation methods such as the SOR, or SSOR iteration, as preconditioners. Our

experience in [10] with these techniques on real Markov chain problems is that they are not

as efficient as the ILU type preconditioners. For further details see [10].

5 Numerical tests

The following illustration is taken from [10]. It compares a few of the methods described in

this paper and includes the power method referred to here as the fixed point iteration and

a direct solver (GE).

The example deals with the system architecture of a time shared, multiprogrammed,

paged, virtual memory computer. The system is composed of a set of N terminals, a central

processing unit, a secondary memory, and a filing device. This real-life example models

requests to each of the devices of the system that axe queued and scheduled on a first come

first served basis. For further details see [10]. The matrix Q obtained here is of dimension

1771 with 11,011 nonzero elements.

The following table shows various statistics associated with the performance of several

methods for solving the matrix equation Qrz -- 0. The direct solver called GE is without

pivoting and without any reordering. All runs have been made on a Ardent Titan computer

in double precision. The compiler option used was -03. but no additional optimization of

the code was performed.
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Method

Method Parameters

ARNOLDI m=10

m-20

m=25

PCARN/

+fLU0

+ILUK

+ILUTH

GMRES/..

+ILUO

+ILUK

+ILUTH

GMRES /

+SOR

Total

Time

51.4

46.5

83.1

Set-up
Time

Iter.

Time

Flops

32.9

51.5

96.8

Additional

Memory

17,971

36,341

45,676

m=5 19.8 0.3 19.3 4.8 23,408

m=10 15.7 0.3 15.2 5.6 32,263

m=10, K=5 9.1 3.3 5.6 2.5 30,050

m=10, K=10, 5.9 4.3 1.4 0.5 38,735

m=10, r = .01 15.1 1.6 13.4 7.1 26,104

m=10, r = .001 11.6 1.8 9.7 3.0 32,142

Iters

'1010

"1020

'1625

160

150

70

10

230

80

Residual

Nora

0.121E-04

0.131E-03

0.184E-03

0.324E-10

0.811E-10

0.291E-I0

0.409E-II

0.543E-I0

0.205F,-I0

m=5 149.1 0.3 148.6 23,408 "1600 0.210E-06

m=10 16.4 0.3 15.9 5.2 32,263 140 0.632E-10

m=20 16.5 0.3 16.0 8.7 49,973 160 0.715E-10

m=10, K=5 7.5 3.3 4.1 1.8 30,050 50 0.922E-10

m=10, K=I0 5.8 4.2 1.4 0.5 38,735 10 0.438E-11

m=10, r = .01 13.0 1.6 11.2 5.5 26,104 180 0.579E-I0

m=5, v = .001 92.4 1.7 90.5 23,287 '1000 0.298E-06

m=10, I"= .001 97.2 1.8 95.2 32,142 '1000 0.204E-06

m=20, r = .001 9.9 1.8 8.0 4.3 49,852 80 0.746F_,-10

m=10, w = 1.0 94.5 37.3 17,710 *i000 0.529E-06

m=10, w = 1.95 49.8 18.7 17,710 *500 0.416E-03

Table h Performance resultsfor testexample. N=1,771; NZ=II,011: NCD Case.

In the figure ILUTH refers to an ILU factorization with threshold r, which consists of

dropping all elements during the factorization that are smaller than r in magnitude. ILUK

refers to a strategy whereby only the K largest elements in £ and in U are kept.

As can be seen from this example Ganssian elimination is faster than the iterative solvers,

although it requires far more storage. Howevez, for the larger problems treated in [10]

Gaussian elimination was too slow or required too much memory. In some cases it also

failed to produce an answer. Among the iterative solvers tested and not shown in the

table, were the SOR method and the preconditioned power method. The SOR method was

generally not reliable because of the demand for an optimal parameter. As for the power

method it converged more slowly than the methods shown here. One surprising observation

made in the experiments in [10] is the fact that the FOM method was often more reliable

than its GMRES counterpart. Another point that is not too well understood is the effect

of improving the incomplete factorization by taking, for example, a smaller threshold in
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ILUTH, or a larger K in ILUK. Whereas the quality of the factorization improves, since

the error matrix E is smaller, this does not always mean that the number of iterations in

the preconditioned Krylov Subspace method will be smaller. This is dearly illustrated in

the table. The phenomenon may be due to the fact that the L and U factors produced

by a more accurate factorization have in fact a worse condition number than with the less

accurate factorization. The relation between the accuracy in the preconditioning technique

and the overall performance is not clear. Note however, that the best results are obtained

with the more accurate preconditioners.
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